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5.1

Introduction

One of the most peculiar features of proteins is their marginal stability within a

narrow range of thermodynamic conditions. Biologically active structures can be

disrupted by increasing or decreasing the temperature, the pressure, the pH or by

adding denaturants. By disrupting a structure one can study its architecture and

energetics. In this article we focus on the thermodynamic aspects of temperature

and pressure denaturation. A variation of temperature inevitably leads to a simul-

taneous change of entropy and volume through thermal expansion. The advantage

of using pressure as a thermodynamic variable is that volume-dependent effects

can be isolated from temperature-dependent effects. Just as the increase in temper-

ature drives the system in equilibrium towards states of higher entropy, a pressure

increase will bias the ensemble of accessible states towards those with a smaller

volume. This is the meaning of le Chatelier’s principle. Thus, if the protein has

the lower volume in its denatured form, the native structure will become unstable

above a critical pressure. Similarly the opposite effect, stabilization of the native

state by pressure, is sometimes associated with heat denaturation.

Packing defects in the water-excluding native state, reorganization of the solvent

near exposed nonpolar side chains, and electrostriction by newly formed charges

act as volume reservoirs which can lower the volume in the unfolded state. While

dissociation of oligomeric proteins into subunits occurs at low pressures, i.e., be-

low 200 MPa [1], pressures above 300 MPa are required to denature monomeric

proteins. A number of useful review articles on this subject have been published

recently (see, for example, Ref. [2]).

The isothermal compressibility of water (0.56/GPa) is quite small. At 11 000 m

below sea level and pressures near 100 MPa, the density of water is only 5% higher

than at ambient pressure. On the other hand, the density at the freezing transition

changes by 9%. Moreover, proteins are 5–10 times less compressible than water.

As a result, pressure-induced volume changes in proteins are quite small, typically

0.5% of the total volume at the unfolding transition. For monomeric proteins

the difference corresponds approximately to the volume of five water molecules
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(5� 18 mL mol�1). Thus, minor volume changes often induce large structural

rearrangements, where essentially incompressible matter is displaced. Therefore

pressure can be a powerful structural gear. On the other hand, the microscopic in-

terpretation of protein volume changes is still one of the difficult and unresolved

questions of the field [3, 4].

Part of the problem arises from the fact that the denatured state itself is not

very well defined [5]. It is generally assumed that thermal denaturing leads to a

random coil state. As to pressure-induced denaturation and cold denaturation,

there are indications that the denatured state is still compact and resembles the

molten globule state [5–7]. How such a situation can be reconciled with the simple

thermodynamic description of protein stability based on a two-state model has to

be investigated in each case.

Below we present a thermodynamic frame for describing and interpreting pro-

tein stability phase diagrams. The main features are illustrated using our own re-

sults obtained with various optical techniques as well as with neutron scattering.

5.2

Basic Aspects of Phase Diagrams of Proteins and Early Experiments

The most striking thermodynamic properties of proteins are related to the hydro-

phobic effect. These are

8 the large and positive heat capacity increment upon unfolding [8–10] and
8 the phenomenon of cold denaturation.

The latter was first predicted by Brandts [11, 12] based on studies of heat denatura-

tion on ribonuclease. The transition temperatures for cold denaturation are usually

below the freezing point of most aqueous solutions at ambient pressure. How-

ever, under high pressure, water remains liquid down to much lower temperatures

(�18 �C at 200 MPa, Figure 5.1).

Thus cold denaturation can be studied conveniently at elevated pressures under

mild denaturing conditions, without the need to add denaturants.

The phase diagram of water (Figure 5.1) illustrates the relevance of the

pressure–temperature plane for locating states of structural stability and for classi-

fying their thermodynamic properties.

The slope of the phase boundary of liquid water and ice I is negative: increase in

pressure extends the stability range of the liquid phase. The slope of the phase

boundary is given by the ratio of the negative entropy change and the increase in

specific volume at the freezing transition (Eq. (3)). The expansion (þ9%) causes

substantial damage when biological material is frozen. In contrast, the slope of

the liquid to ice III boundary is large and positive, since the corresponding volume

change is small and negative. The application of high pressure to the liquid and

then cooling into ice III minimizes the damage by volume changes (�3%) at the

freezing transition.

(V7 21/7 14:24) VCH/G J-1079 Buchner I H3/R 10/03 PMU: WSL(W) 19/07/04 pp. 99–126 ch05_p ScalaLF (0).3.04.05 (p. 100)

5 Pressure–Temperature Phase Diagrams of Proteins100



Proteins, consisting of a few thousand atoms, are mesoscopic objects. Experience

and theoretical analysis shows [13] that they can be labeled by well-defined ther-

modynamic averages, such as the specific heat capacity, the compressibility, and

the thermal expansion. The structural reorganization may then be regarded as a

change of the macroscopic state of the system. Such changes occur in a highly co-

operative manner. Since the native and denatured states of proteins differ not only

in heat capacity but also in volume and entropy, the transition between the two

states must involve a discontinuity in the first derivatives of the thermodynamic

potential. This is the signature of a first-order phase transition. Consequently, the

native and denatured states of a single-domain protein may be interpreted as two

phases of a macroscopic system, which differ in structural order. For a single pro-

tein molecule the transformation can only be abrupt and not gradually. From this

point of view a cooperative domain of a protein resembles a crystal, which has,

however, a critical size, since it can only exist as a whole. Experimentally, however,

one usually deals with protein ensembles.

The properties of the ensemble, which are reflected in the heterogeneity of the

characteristic parameters of a protein, such as its energy, structure, compressibility,

etc., render some specific features to the denaturing transition compared with

phase transitions of thermodynamic systems: The transition is usually rather broad

in the variables P or T (e.g., see Figures 5.9 and 5.10). This dispersion of the tran-

sition region is directly related to the heterogeneity of the protein ensemble, which

has its roots in the fact that a protein, although a large molecule, is not an infinite

Fig. 5.1. The phase diagram of water: For the boundary from

the liquid to hexagonal ice (I) one has dP=dT ¼ DS=DV < 0,

unlike for the technically relevant modifications, II and III where

the volume discontinuity is small.
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system. The equilibrium constant KDNðT ;PÞ follows from the pressure analog of

the van t’Hoff equation with qT ! qP and DS ! �DV :

qðln KDNÞ=qP ¼ �DV=RT

The transition width, determined by the magnitude of the transition volume DV , is

finite for a mesoscopic protein molecule, in contrast to the zero width of a macro-

scopic first-order transition.

Hawley, in 1971, was the first to interpret the curve on which the free energy dif-

ference between native and unfolded state vanishes as an elliptical phase boundary.

This provided a natural explanation for the so-called re-entrant phase behavior of

heat and cold denaturation [14]. Figure 5.2 shows the contours of the Gibbs free

energy DGðP;TÞ versus pressure and temperature for chymotrypsinogen. Note

that at moderate pressure levels (< 150 MPa), the temperature of heat denatura-

tion increases slightly with pressure. Hence, applying pressure to the thermally

denatured protein may actually drive the protein back into the native state. Upon

further increasing the pressure, however, unfolding may occur again. In other

words, the denatured phase is re-entered, irrespective of the fact that the pressure

is monotonously changed. Phase diagrams with this property are called ‘‘re-

entrant.’’ A similar behavior is found if the temperature is changed. For instance,

if one starts out at sufficiently high pressure levels (200 MPa) in the denatured
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Fig. 5.2. Contours of constant chemical potential Dm ¼
mD � mN between the denatured (D) and the native (N) state

of chymotrypsinogen (after Hawley [14]).
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state and lowers the temperature, one enters the native regime which is, however,

left again at even lower temperatures to re-enter the denatured regime again. This

latter transition is called ‘‘cold denaturation’’.

Re-entrant phase diagrams of perfect elliptical shape have been observed for liq-

uid crystals by Cladis et al. [15] and by Klug and Whalley [16]. The elliptical shape

was analyzed in detail by Clark [16].

In 1973, Zipp and Kauzmann, in a seminal paper, investigated the pressure–

temperature–pH phase diagram of myoglobin [18]. They also observed re-entrant

behavior, but did not attempt to fit the phase boundaries using ellipses. Depending

on pH, the boundaries vary strongly in shape and show nonelliptical distortions, as

shown in Figure 5.3.

In recent years, a significant number of studies HAVE suggested diagrams of el-

liptical shape for protein denaturation or for even more complex units, such as bac-

teria [19].

The stability phase diagram of proteins and related phenomena have been dis-

cussed in several review articles [20, 21].

Our goal is to eludicate the physical basis and thermodynamics of re-entrant pro-

tein phase diagrams, the conditions for elliptical shapes, and the limitations of this

approach.

5.3

Thermodynamics of Pressure–Temperature Phase Diagrams

The phase equilibrium between the native and the denatured state N F D is con-

trolled by the difference in the chemical potentials Dm ¼ mD � mN. The ratio of con-

Fig. 5.3. Phase boundaries (Dm ¼ 0) of myoglobin at various

pH values, the native state is stable inside the contours, the

denatured state outside (after Zipp and Kauzmann [18]).
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centrations of the denatured to the native form assuming a dilute solution is given

by:

KDN ¼ cD=cN ¼ expð�Dm=RTÞ ð1Þ

The chemical potential is the driving force that induces transport and transfor-

mations of a substance. It is analogous to the electrical potential, which can only

induce currents because of charge conservation. Since the concentration of compo-

nents, water, and protein is fixed (only pressure and temperature are varied), we

restrict ourselves to one-component systems. The change dmi with temperature

and pressure obeys the Gibbs–Duhem relation for each phase D and N:

dmN ¼ �SN dT þ VN dP ¼ �RT dðln cN=c0Þ

dmD ¼ �SD dT þ VD dP ¼ �RT dðln cD=c0Þ
ð2Þ

where SN;SD and VN;VD are the partial molar entropy and volume of the protein

in solution in the native and denatured phase, respectively. Since entropy and vol-

ume are generally positive quantities, the chemical potential always decreases with

increasing temperature, while it increases with increasing pressure, as shown in

Figures 5.4 and 5.6. The potentials of two phases, differing in entropy, will thus

cross at a particular temperature where a transition to the phase with the lower po-

tential occurs. A similar change in phase will take place with pressure when the

volumes of the two phases differ. Thus the more compact phase will be stable at

high pressure.
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myoglobin and the resulting Dm per mole
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SC ¼ 14 kJ mol�1, DCp ¼ 75 kJ K�1 mol�1).

TH; TC, and TM are the heat, cold denaturation

temperature, and the temperature of maximum

stability.
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For proteins in particular, SD > SN because of an excess in configurational

entropy of the unfolded chain. Thus mD has the more pronounced temperature

dependence and will fall below mN at TH, the heat denaturation temperature. For

myoglobin it is suggested in Figure 5.4 that the peculiar thermodynamic behavior

of proteins arises from the strongly temperature-dependent entropy of the un-

folded phase: the slope of mDðTÞ and thus the entropy SDðTÞ decrease with decreas-

ing temperature.

On a microscopic scale this reflects the ordering force of nonpolar groups on sur-

face water molecules. Since the corresponding hydrophobic effect is less pro-

nounced in the native state, SN is expected to be almost temperature independent.

This discrepancy explains why the potential surfaces mD and mN meet again at TC,

the cold denaturation temperature as shown in Figure 5.4. The chemical potential

difference, Dm ¼ mD � mN, consequently assumes the shape of a convex curve,

which is close to an inverted parabola with the maximum at TM, the temperature

of maximum stability (Figure 5.5).

Changes in pressure displace the difference potential surface Dm vertically, de-

pending on the unfolding volume DV as shown in Figure 5.5a.

Since the phase transition occurs at constant chemical potential, DmðP;TÞ ¼ 0,

or cN ¼ cD, while pressure and temperature are varied, one derives, from Eq. (2), a

differential equation for the phase boundary, the Clausius–Claperon equation:

ðdP=dTÞDm¼0 ¼ DS=DV ð3Þ

where DS ¼ SD � SN and DV ¼ VD � VN can depend on T and P. The phase

boundary (Figure 5.5b) will assume the shape of an inverted parabola if the unfold-

ing volume DV is negative and constant in P and T. For positive unfolding volumes

a regular parabola, open to the high pressure side, would be obtained excluding

denaturation by pressure.
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Fig. 5.5. a) Schematic representation of the

difference Dm ¼ mD � mN of the chemical

potential as a function of temperature for

various pressures as deduced from Figure 5.4.

b) The phase boundary as schematically

deduced from the two Dm ¼ 0 points of Figure

5.5a for negative values of DV ¼ VD � VN.
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The latent quantities DS and DV are composed of intrinsic contributions of the

protein and those of the hydration shell, while the values of bulk water in both

phases cancel.

The entropy difference reflects mainly the increase in configurational entropy of

the chain, DSC, and the entropy change DSH in the hydration shell, due to expo-

sure of buried residues. The same reasoning applies to the latent volume. Hence,

we can write:

DS ¼ DSC þ DSH

DV ¼ DVC þ DVH

ð4Þ

We argue that the closed-phase boundaries displayed in Figures 5.2 and 5.3 are

the consequence of the variation of DSH and DVH with temperature and pressure

due to the hydrophobic effect. Exposure of nonpolar groups upon unfolding tends

to immobilize water molecules, thereby decreasing their entropy. This mechanism

is strongly temperature dependent. Its experimental signature is the positive heat

capacity increment at constant pressure, DCp > 0, of the denatured relative to the

native form. In simple terms, to increase the temperature of the unfolded phase

requires additional entropy to continuously melt the immobilized water [8–10, 23,

24]. However, above a certain temperature, T0, approximately 140 �C, the ordering

effect has vanished.

Below T0, the hydration entropy change, DSHðT ;T0), is rapidly decreasing with

decreasing temperature. Assuming DCp to be approximately independent of tem-

perature, one obtains for the change in ‘‘hydration entropy’’ [25]:

DSHðTÞ ¼
ð T

T0

DCP

T
dT ¼ �DCP � ln

T0

T

� �
ð5Þ

and thus from Eqs (2)–(5):

Dm ¼ Dm0 � ðT � T0Þ � ½DSC � DCp lnðT0=TÞ� þ DV � P ð6Þ

The hydration term zDCp is always negative below T0, stabilizing the denatured

form. This is known as the ‘‘wedging effect’’ of water, which softens the native

structure. The combined entropy difference DS vanishes at the maximum of Dm,

at the temperature of maximum stability TM (Figure 5.4):

ðqDm=qTÞT¼TM
¼ �DS ¼ 0 ð7Þ

At TM the negative hydration entropy DSH just compensates for the positive config-

urational term DSC:

DSC ¼ DCp lnðT0=TMÞ ð8Þ
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DS in Eq. (7) depends on pressure and temperature according to:

dDSðP;TÞ ¼ ðqDS=qTÞ dT þ ðqDS=qPÞ dP ¼ ðDCp=TÞ � dT � DaP � dP ¼ 0 ð9Þ

where we have introduced the volume expansion increment DaP ¼
ðqDV=qTÞP¼const.

Equation (9) defines the slope of a boundary DSðT ;PÞ ¼ constant in the P–T
plane:

ðdP=dTÞDS¼const ¼ DCp=ðT � DaPÞ ð10Þ

The special DS ¼ 0 line, separating regions of positive and negative transition en-

tropies, is fixed by the condition ðdP=dTÞDm¼0 ¼ 0 as shown in Figure 5.11. Since

the slope in Figure 5.11 is positive and since both DCp and DV are positive, it fol-

lows that DaP > 0. Integrating Eq. (10) yields the effect of pressure on the temper-

ature of maximum stability:

TM ¼ TM0 � expðP � Dap=DCpÞ ð11Þ

For reasonably low pressures one has for the DS ¼ 0 line: TMATM0 �
ð1þ P � Dap=DCpÞ. Expanding the chemical potential (Eq. (6)) about TMATM0

yields an approximate parabola in T with negative curvature (Figure 5.5a):

DmðT ;PÞ ¼ DmM � 1
2DCp � ðT � TMÞ2=T þ DV � P ¼ �RT lnðcD=cNÞ ð12Þ

For DV < 0, increasing pressure diminishes the stability range of the native state.

If DV is constant, one obtains the parabolic pressure–temperature phase diagram,

PðTÞDm¼0, shown in Figure 5.5b.

Experimental data, like those shown in Figure 5.2, 5.3, and 5.11 suggest a re-

entrant phase behavior not only as a function of temperature but also as a function

of pressure. This leads to a closed or ‘‘ellipsoidal’’ phase boundary with DV de-

pending on pressure and temperature. The volume of the denatured form, the

slope of mDðPÞ in Figure 5.6, which increases with decreasing pressure. Thus a sec-

ond crossing of the DaN potentials may occur at low or even negative pressure de-

noted by PL. Thus the unfolded protein is more easily stretched than the compact

native state. Moreover, near P ¼ 0, a pressure increase will stabilize the native

state. In analogy to the temperature (Eq. (7)) we can define a pressure of maximum

stability, PM, according to:

ðqDm=qPÞP¼PM
¼ DV ¼ 0 ð13Þ

Combining Eqs (4) and (13) shows that the changes in configurational and hydra-

tion volume cancel at P ¼ PM. The small observed unfolding volumes may result

from such compensation effects. Equation (13) allows determination of the

DVðP;TÞ ¼ 0 line, separating regions of positive and negative volume changes:
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ðqDV=qTÞ dT þ ðqDV=qPÞ dP ¼ DaP � dT � DbT � dP ¼ 0 ð14Þ

thus

ðdP=dTÞDV¼const ¼ DaP=DbT ð15Þ

The DV ¼ 0 line follows from the additional condition: ðdP=dTÞDm¼0 ¼z. For the

pressure of maximum stability one obtains:

PM ¼ Pr þ ðDaP=DbTÞðT � TrÞ ð16Þ

DbT denotes the increment in the compressibility coefficient: DbT ¼ �ðqDV=qPÞ.
Tr denotes an unspecified reference temperature. For second-order phase transi-

tions, sometimes associated with molten globule denaturation [26, 27], there is no

discontinuity in the extensive quantities.

Equations (9) and (14) then become the so-called Ehrenfest equations:

ðdP=dTÞDS¼0 ¼ ðdP=dTÞDV¼0

For most proteins cold denaturation occurs at subzero temperatures in the

unstable or supercooled region of the water phase diagram. For this reason cold

denaturation was formerly considered to be irrelevant to protein science. Similarly,

low-pressure denaturation at PLðTÞ occurs for most proteins in a large temperature
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range where pressure is negative. Liquids under tension are unstable, although

metastable states can exist, since the creation of a new liquid–gas interface involves

the crossing of an energy barrier. The first experiments were performed by Berthe-

lot in 1850 using a spinning capillary [28]. Stretched states of water at pressures as

low as –280 bars have been observed using the same method [29]. Unfolding ex-

periments with protein solutions at negative pressures still need to be performed.

The folding of unstable proteins such as nuclease conA remains incomplete at pos-

itive pressure, while negative pressure may further stabilize the native state [30]. At

sufficiently high temperature, low-pressure denaturation may occur in the positive

range (Figure 5.11) and in this case it is easily accessible experimentally.

Pressure- and temperature-dependent transition volumes originate from finite

increments in the partial compressibility DbT and the volume expansion coefficient

DaP. Expanding the latent volume DV about a reference point ðTr;PrÞ yields:

DVðP;TÞ ¼ DVr � DbT � ðP � PrÞ þ DaP � ðT � TrÞ ð17Þ

The major part of the change in the compressibility upon global transformations of

proteins is due to hydration processes [31]. The greater the hydration, the smaller

the partial compressibility. This is the rule for protein solutions at normal temper-

ature and pressure. For native proteins the intrinsic compressibility is as low as

that of organic solids [32–34]. The outer surface contribution to the measured par-

tial compressibility is quite negative. Thus complete unfolding leads to a consider-

able decrease in the partial compressibility due to the loss of intramolecular voids

and the expansion of the surface area contacting the bulk water [35]. In this low

pressure/high temperature regime DbT is negative, while DaP is mostly positive.

This results in a positive unfolding volume (Eq. (17)) as indicated in Figure 5.6.

Consequently moderate pressures stabilize the native state. A number of studies

suggest that high-pressure denaturation leads to incomplete unfolding and struc-

tures resembling those of molten globule states (MG) [5–7, 36]. The N ! MG

transition is generally accompanied by an increase in compressibility. The ten-

dency towards a positive DbT at higher pressures due to partial unfolding may

lead to the observed negative unfolding volumes. Combining Eqs (12) and (17),

the phase boundary DmðT;PÞ ¼ 0 with respect to a reference point ðTr;PrÞ assumes

the form of a second-order hyperface:

�1
2DCp � ðT � TrÞ2=T � 1

2DbT � ðP � PrÞ2 þ DaP � ðT � TrÞ � ðP � PrÞ

� DSr � ðT � TrÞ þ DVr � ðP � PrÞ þ Dmr ¼ 0 ð18Þ

For approximately constant increments DCp;DbT;DaP, the phase boundary as-

sumes parabolic ðDbT ¼ 0Þ, hyperbolic or closed elliptical shapes. The basic condi-

tion to obtain an elliptical phase diagram is given by:

ðDCpÞðDbTÞ � ðDaPÞ2 > 0 ð19Þ
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Since experiments show that DCp > 0, Eq. (19) requires the compressibility change

to be positive: DbT > 0. A hyperbolic shape would imply a negative left-hand side

in Eq. (19). Thus far only elliptical diagrams, in some cases with distortions (e.g.,

Figure 5.3) have been discussed. A complete solution would require data in the

range where pressure is negative: the data shown in Figure 5.2 are also consistent

with a parabolic shape.

5.4

Measuring Phase Stability Boundaries with Optical Techniques

5.4.1

Fluorescence Experiments with Cytochrome c

Protein denaturing processes can be investigated with many techniques. The most

convenient ones concerning the determination of the whole stability diagram are

spectroscopic techniques. Almost all methods have been used: IR, Raman, NMR,

absorption and fluorescence spectroscopy. However, data covering complete phase

diagrams are quite rare. Some of them were reviewed above. The various techni-

ques have their specific advantages as well as disadvantages. For instance, with vi-

brational spectroscopy one obtains information on structural changes such as the

weakening of the amide I band [20, 21, 37, 38], with NMR one obtains information

on hydrogen exchange and the associated protection factors [6] from which conclu-

sions on structural details of the denatured state can be drawn. However, as a rule

no information on the structure disrupting mechanism under pressure is ob-

tained. The situation with absorption and fluorescence spectroscopy is different.

In optical spectroscopy it is the spectral position and the linewidth of an electronic

transition that is measured. From these quantities it is, as a rule, quite difficult to

extract any structural information. On the other hand, one obtains detailed infor-

mation on the interaction of the electronic states with the respective environment.

Since these interactions are known in detail, it is possible to extract from their be-

havior under pressure and temperature changes information on the mechanism of

phase crossing.

Compared with other spectroscopic techniques, fluorescence spectroscopy is also

the most sensitive. Hence, it is possible to work at very low concentration levels so

that aggregation processes can easily be avoided. In most experiments tryptophan

is used as a fluorescent probe molecule. With chromoproteins this is, generally

speaking, impossible since fast energy transfer to the chromophore quenches the

UV fluorescence to a high degree. In the following we describe fluorescence experi-

ments on a cytochrome c-type protein in a glycerol/water matrix [39]. The native

heme iron was substituted by Zn in order to make the protein strongly fluorescent

in the visible range. As a short notation for this protein we use the abbreviation

Zn-Cc.

The set-up for a fluorescence experiment is simple and is shown in Figure 5.7.

The sample is in a temperature- and pressure-controlled diamond anvil cell.
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Pressure can be varied up to about 2 Gpa. Its magnitude is determined from the

pressure shift of the ruby fluorescence, for which reference values can be taken

from the literature [40]. The temperature is controlled by a flow thermostat be-

tween �20 �C and 100 �C. Excitation is carried out into the Soret band at 420 nm

with light from a pulsed dye laser pumped by an excimer laser. The fluorescence is

collected in a collinear arrangement, dispersed in a spectrometer and detected via a

CCD camera. The quantities of interest for measuring the protein stability phase

diagram are the spectral position and the width of the S1 ! S0 00-transition (587

nm, Figure 5.8). Generally speaking the spectral changes for Zn-Cc are rather

small. Nevertheless the measured changes of the spectral shifts and widths are ac-

curate within about 3%. Figure 5.8 shows the fluorescence spectrum of Zn-Cc be-

tween 550 and 700 nm as it changes with pressure. The sharp line around 695 nm

is the fluorescence from ruby.

Fig. 5.7. Sketch of a fluorecence experiment for measuring the phase diagram of proteins.
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Fig. 5.8. Fluorescence spectrum of Zn-

cytochrome c in glycerol/water at ambient

temperature as it changes with pressure. The

stability diagram was determined from the

changes of the first and second moment of the

00-band at 584 nm. The fluorescence from

ruby is shown as well. It serves for gauging the

pressure.
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5.4.2

Results

Figures 5.9 and 5.10 show typical results for the changes in the first and second

moment (position of the maximum and width) of the 00-band under pressure and

temperature variation.

If pressure is increased the band responds with a red shift, although a very small

one (Figure 5.9). Around 0.75 GPa the red shifting regime changes rather abruptly

into a blue shifting regime which levels off beyond 1 GPa. A qualitatively similar

behavior is observed for the band shift under a temperature increase: a red shifting

phase (in this case more pronounced) is followed by a blue shifting phase (Figure

5.10). Quite interesting is the behavior of the bandwidth: an increase of pressure

leads to a rather strong increase in the width (Figure 5.9). This is the usual behav-

ior and just reflects the fact that an increase in density results in an increase in the

molecular interactions due to their strong dependence on distance. However, if the

pressure is increased beyond about 0.9 GPa, the band all of a sudden narrows. This

narrowing levels off beyond about 1 GPa. As can be seen from the figure, the max-

imum in the bandwidth coincides with the midpoint of the blue shifting regime.

The thermal behavior of the bandwidth is different (Figure 5.10): there is no nar-

rowing phase, but there is kind of a kink in the increase of the bandwidth with

temperature around 65 �C. Again, this change in the thermal behavior of the width

Fig. 5.9. The behavior of first and second moment of the

fluorescence under pressure variation at ambient temperature.
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coincides rather well with the midpoint in the thermally induced blue shifting

phase.

For measuring the complete phase diagram we performed a series of pressure

scans from ambient pressure up to about 1.5 GPa at various temperatures and a

series of temperature scans from a few centigrades up to about 90 �C at various

pressure levels. The respective pattern of the changes of the fluorescence always

showed the sigmoid-like behavior as discussed above. We associate the midpoint

of the blue shifting regime with the stability boundary between the native and the

denatured state of the protein due to reasons discussed below.

The complete stability diagram is shown in Figure 5.11. The solid line represents

an elliptic least square fit to the experimental points. The two solid lines DS ¼ 0

and DV ¼ 0 cut the stability diagram at points where the volume and the entropy

difference change sign (see also Eqs (11) and (16)). For instance, for all data points

to the left of the DS ¼ 0 line the entropy in the denatured state SD is smaller than

SN, the entropy in the native state (see below).

Figures 5.12 and 5.13 show specific features of the fluorescence behavior which

we want to discuss separately. Figure 5.12 shows the behavior of the first and sec-

ond moment for cold denaturation at ambient pressure. The point which we want

to stress is that the band shift no longer reflects the qualitative change in its behav-

ior. Instead, we observe a blue shift which increases in a nonlinear fashion with

decreasing temperature. From such a behavior it is hard to determine a transition

Fig. 5.10. The behavior of the first and second moment of the

fluorescence under temperature variation at ambient pressure.
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Fig. 5.11. The stability phase diagram of Zn-cytochrome c. The

solid line is an elliptic least square fit to the data points. The

straight lines mark the points where DS and DV change sign.

Fig. 5.12. The behavior of the first and second moment of the

fluorescence for cold denaturation at ambient pressure.
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point. The bandwidth, on the other hand, shows a quite unusual behavior: it nar-

rows with decreasing temperature, but around �3 �C it runs through a minimum

and starts broadening upon further decreasing the temperature. The unusual be-

havior concerns the broadening with decreasing temperature. This broadening ob-

viously originates from an additional state which becomes populated below �3 �C.

Naturally, this state must be the denatured state of the protein. Hence, we associate

this minimum in the bandwidth with the stability boundary.

The temperature dependence of the moments in Figure 5.13 follows a rather

complex pattern. This pattern comes from the re-entrant character of the phase di-

agram which has been stressed in Section 5.2. At a pressure level of 0.7 GPa, the

protein is denatured to a high degree if the temperature is below around 10 �C (see

Figure 5.11). Hence, upon increasing the temperature, the protein enters the stable

regime. This is most clearly reflected in a narrowing of the bandwidth due to the

fact that the denatured state becomes less and less populated At the same time the

band maximum undergoes a red shift in line with the observation that the dena-

tured state is blue shifted from the native one. However, around 25 �C the red

shifting phase turns into a blue shifting phase, signaling that the protein re-enters

the denatured regime. The bandwidth data support this conclusion. Interestingly,

the data convey the impression that there are more than just two transitions in-

volved; their nature, however, is not clear.

Fig. 5.13. The first and second moment of the fluorescence

under a temperature variation at high pressure (0.7 GPa). The

pattern shows features characteristic for re-entrant phase

crossing.
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5.5

What Do We Learn from the Stability Diagram?

5.5.1

Thermodynamics

The eye-catching feature in Figure 5.11 is the nearly perfect elliptic shape of the

stability diagram in agreement with the simple model developed in Section 5.3.

The elliptic shape implies that the characteristic thermodynamic parameters of

the protein, namely the increments of the specific heat capacity, the compressibility

and the thermal expansion are rather well-defined material parameters, i.e., do

not significantly depend on temperature and pressure. In addition, since the model

is based on just two states, we conclude from the elliptic shape that the protein

investigated, namely Zn-Cc, can be described as a two-state folder. Applying the

Clausius–Clapeyron equation (Eq. (3)) to the elliptic phase boundary, we see that

there are distinct points characterized by (dP=dTÞDm¼0 ¼ y and by (dP=dTÞDm¼0 ¼
0. The former condition separates the regime with positive DV from the regime

with negative DV . The latter one separates the regime with positive DS from the

regime with negative DS (Eqs (7) and (13)).

Let us consider thermal denaturation at ambient pressure. DS is definitely posi-

tive because the entropy of the chain increases upon denaturation and the entropy

of the solvent increases as well. Since the slope of the phase boundary is positive,

DV must be positive, too. However, moving along the phase boundary, we even-

tually cross the DV ¼ 0 line. For all points above that line, DV is negative. In other

words: application of pressure destabilizes the native state and favors the dena-

tured state. Below the DV ¼ 0-line, DV is positive. Accordingly, application of pres-

sure favors the native state.

In a similar way, for all points to the right of the DS ¼ 0 line, DS is positive. A

positive entropy change upon denaturation is what one would straightforwardly ex-

pect. However, to the left of the DS ¼ 0 line, the entropy change is negative, mean-

ing that the entropy in the denatured state is smaller than in the native state. As

was discussed above, the negative entropy change is due to an upcoming ordering

of the hydration water as the temperature is decreased: The exposure of hydropho-

bic groups causes the water molecules in the hydration shell to become more and

more immobilized due to the formation of a stronger hydrogen network. Right at

the point where the DS ¼ 0 line cuts the phase diagram, the chain entropy and the

entropy of the hydration shell exactly cancel, as we have stressed above.

There is another interesting outcome from the elliptic shape of the phase dia-

gram: Eq. (19) tells us that the change in the compressibility upon denaturation

has to have the same sign as the change in the specific heat. The change in the

specific heat is positive meaning that the heat capacity is larger in the unfolded

state. As outlined above, this is due to the fact that an increase of the temperature

in the denatured state requires the melting of the ordered immobilized hydration

shell. Accordingly, Db has to be positive, meaning that the compressibility in the

denatured state is larger than in the native state. As to the absolute values of
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the thermodynamic parameters which determine the phase diagram, they can be

determined only if one of the parameters is known. In the following section we

will show how the equilibrium constant can be determined as a function of tem-

perature and pressure and how this can be exploited to extract the thermodynamic

parameters on an absolute scale.

5.5.2

Determination of the Equilibrium Constant of Denaturation

The body of information that can be extracted from the thermodynamics of protein

denaturation reveals surprising details. However, it should be stressed again that

all the modeling is based on two important assumptions, namely that folding and

denaturing is described within the frame of just two states, N and D, and that these

two states are in thermal equilibrium. Neither of these assumptions is straightfor-

ward. It is well known that the number of structural states, even of small proteins

is, is extremely large [41–47] and the communication between the various states

can be very slow so that the establishment of thermal equilibrium is not always

ensured. We understand the two-state approximation on the basis of a concept

which we call ‘‘state lumping.’’ In simple terms this means that the structural

phase space can be partitioned into two areas comprising, on the one hand, all

the states in which the protein is functioning and, on the other hand, the area in

which the protein is dead. We associate the native state N and the denatured state

D with these two areas. In order for the ‘‘state lumping’’ concept to work, the im-

mediate consequence is that all states within the two and between the two areas

are in thermal equilibrium. Whether this is true or not can only be proven by the

outcome of the experiments.

For Zn-Cc this concept seems to hold sufficiently well. In our experiments, typi-

cal waiting times for establishing equilibrium were of the order of 20 minutes. In

order to make sure that this time span is reasonable, we measured for some points

on the phase boundary also the respective kinetics. However, we also stress that at

high pressures and low temperatures (left side of the phase diagram, Figure 5.11)

we could not get reasonable data and we attributed this to the fact that equilibrium

could not be reached within the experimental time window.

Assuming that equilibrium is established and the two-state approximation holds

with sufficient accuracy, we can determine the equilibrium constant as a function

of pressure and temperature from the fluorescence experiments and from the fact

that the phase diagram has an elliptic shape. We proceed in the following way: The

fluorescence intensity FðlÞ in the transformation range is a superposition from the

two states N and D with their respective fluorescence maximum at lN and lD:

FðlÞ ¼ pNaN exp½�ðl� lNÞ2=2sN2� þ pDaD exp½�ðl� lDÞ2=2sD2� ð20Þ

where pN and pD are the population factors of the two states N and D, aN and aD
are the respective oscillator strengths. Changes of the temperature or the pressure

of the system cause a change in the population factors pN and pD which, in turn,
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leads to a change in the first moment of FðlÞ, that is in the spectral position of

the band maximum, lmax. As to Zn-Cc, we can make use of some of its specific

properties: First, the chromophore itself is quite rigid, hence, it is not likely af-

fected by pressurizing or heating the sample. Accordingly, it is safe to assume

that the oscillator strengths in the native and in the denatured state are not signifi-

cantly different from each other. Second, the spectral changes induced by varying

the temperature or the pressure are rather small compared to the total width of

the long wavelength band (Figure 5.8). In addition, the wavelengths lN and lD are

rather close and well within the inhomogeneous band. As a consequence, the ex-

ponentials in Eq. (20) are roughly of the same magnitude irrespective of the value

of l. Along these lines of reasoning, lmax is readily determined from the condition

dF=dl ¼ 0:

lmax ¼ pNðT ;PÞlN þ pDðT;PÞlD ¼ pNðT; pÞ½lN � lD� � lD ð21Þ

The last term on the right hand side of Eq. (21) holds because we restrict our eval-

uation to an effective two-state system. According to the above equation, the band

maximum in the transition region is determined by a population weighted average

of lN and lD. Since lN and lD depend on pressure and temperature themselves, we

have to determine the respective edge values in the transition region. How this is

done is shown in Figure 5.14 for thermal denaturation at ambient pressure. Simi-

lar figures are obtained for any parameter variation. Having lmax as a function of

pressure or temperature from the experiment and knowing the respective edge

Fig. 5.14. Determination of the edge values lN and lD.
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values lN and lD, the population factors pN and pD can readily be evaluated as a

function of pressure and temperature using Eq. (21). From the population factors

the equilibrium constant K follows immediately:

KDNðT ;PÞ ¼ ½1� pNðT ;PÞ�=pNðT ;PÞ ð22Þ

Once K is known, Dm (or, equivalently, DG mol�1) can be determined as a function

of pressure and temperature from Eq. (1). For a fixed pressure, say pi, DmðT ;PiÞ
forms an inverted parabola in T, as was shown in Section 5.3. The same is true

for DmðP;TiÞ. So we determined DmðTÞ and DmðPÞ by fitting parabolas to the few

data points (Figures 5.15 and 5.16) under the constraints that both branches of

these parabolas have to go through the phase boundaries of the stability diagram

(Figure 5.11). From the first and second derivative of Dm with respect to tempera-

ture and pressure all the thermodynamic parameters, namely DVðT;PÞ;DSðT ;PÞ;
DCp;Db and Da, can be determined. For Zn-Cc this parameters are listed in Table

5.1. We took DCp from the equilibrium constant because it seems to be the most

accurate parameter (Figure 5.15). As a matter of fact our value is rather close to

what was measured by Makhatadze and Privalov for unfolding native cytochrome

c [10]. All the other parameters are determined from the phase diagram. Note that

Db has the same sign as DCp, as required for an elliptic shape of the diagram.

Fig. 5.15. Temperature dependence of the difference of the

Gibbs free energy DG. (Note that, for a one-component system,

DG=Mol ¼ Dm).
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5.5.3

Microscopic Aspects

Having determined the complete set of thermodynamic parameters which govern

denaturation of Zn-Cc, we may now proceed with exploring the microscopic driv-

ing forces of denaturation. We stress that the pattern in the behavior of the first

moment of the fluorescence 00-transition is qualitatively very similar for thermal

and pressure denaturation: A red shifting regime upon an increase in both param-

eters is followed by a blue shifting regime which signals the onset of the transfor-

mation range. The solvent shift of an optical transition is mainly determined by

Fig. 5.16. Pressure dependence of the difference in the Gibbs free energy DG.

Tab. 5.1. Thermodynamic parameters for the denaturation of

Zn-cytochrome c.

Parameters From the fit

DCp (kJ mol�1 K�1) 5.87

Db (cm3 mol�1 GPa�1) 148.1

Da (cm3 mol�1 K�1) 0.139

DV (0.91 GPa, 298 K) (cm3 mol�1) �74.6

DS (0.91 GPa, 298 K) (kJ mol�1 K�1) �0.263

DV (0.1 MPa, 333 K) (cm3 mol�1) 65.0

DS (0.1 MPa, 333 K) (kJ mol�1 K�1) 0.530
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two types of interactions, namely the dispersive and the higher order electrostatic

interaction (dipole–induced dipole). Both types of interaction are very short ranged.

They fall off with distance R as R�6. From the pioneering papers by Bayliss, McRae

and Liptay [48–50], it is well known that the dispersive interaction is always red

shifting because the polarizability in the excited state is higher than in the ground

state. However, electrostatic interactions can cause shifts in both directions, to the

red as well as to the blue, depending on how the dipole moment of the chromo-

phore changes in the excited state compared with the ground state Accordingly, in

the blue shifting regime, the electrostatic interaction of the probe with its environ-

ment obviously increases compared with the dispersive interaction. As a conse-

quence, we conclude that polar groups with a sufficiently large dipole moment

have to come close to the chromophore to induce this shift.

As to thermal denaturation, such an interpretation seems to fit quite well into

the scenario. Baldwin [23], for instance, could show that thermal denaturation of

a protein is remarkably well described in analogy to the solvation of liquid hydro-

carbons in water. This ‘‘oil droplet model’’ accounts for the temperature depen-

dence of the hydrophobic interaction: The entropic driving force for folding, which

comprises the major part of the hydrophobic interaction, decreases as the temper-

ature increases. This driving force is associated with the formation of an ordered

structure of the water molecules surrounding the hydrophobic amino acids. At suf-

ficiently high temperature this ordered structure melts away so that the change of

the unfolding entropy of the polypeptide chain takes over and the protein attains a

random coil-like shape [5]. Since a random coil is an open structure, the chromo-

phore may now be exposed to water molecules. Water molecules have a rather high

permanent dipole moment, hence, may become polarized through the electrostatic

interaction with the chromophore. Along these lines of reasoning, it seems

straightforward that the observed blue shifting regime of the fluorescence in the

thermal denaturation of Zn-Cc comes from the water molecules of the solvent.

However, as was pointed out by Kauzmann [51], the ‘‘oil droplet model’’ has severe

shortcomings, despite its success in explaining the specific features of thermal de-

naturation. It almost completely fails in explaining the specific features of pressure

induced denaturation. Pressure denaturation is governed by the volume change

DV (Section 5.3). In this respect hydrophobic molecules behave quite differently

from proteins: DV for protein unfolding is negative above a few hundred MPa

(see, for instance, Figure 5.11 and discussions in Sections 5.3 and 5.5.1), whereas

it is positive in the same pressure range for transfering hydrophobic molecules

into water. There are two possible consequences: Either the ‘‘oil droplet model’’ is

completely wrong, or the pressure denatured state is different from the thermally

denatured state.

Indeed, Hummer and coworkers could show that the latter possibility is true [52,

53]. On the basis of their calculations they suggested that, as pressure is increased,

the tretrahedral network of H-bonds in the solvent becomes more and more frus-

trated so that the pressure-induced inclusion of water molecules within the hydro-

phobic core becomes energetically more and more favorable. As a consequence, the

contact configuration between hydrophobic molecules is destabilized by pressure
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whereas the solvent-separated contact configuration (a water molecule between two

hydrophobic molecules) is stabilized. In simple words this means that water is

pressed into the protein, the protein swells but does not completely unfold into a

random coil conformation but rather seems to retain major parts of its globular

shape. The important conclusion is that pressure denaturation is based on the

presence of water. Larger solvent molecules, such as glycerol, can obviously not

penetrate the protein, hence may act as stabilizing elements against pressure [54].

It seems that this view on the microscopic aspects of pressure denaturation is

convincingly supported by our experiments: First, we stress again that the general

pattern in the variation of the first moment with pressure is very similar to the

respective variation with temperature. Since, in the latter case, we attributed this

pattern to water molecules approaching the chromophore, it is quite natural to

associate the pressure-induced pattern with the same phenomenon. Second, the

magnitude of the change in the first moments is about the same for thermally

and pressure-induced denaturation. Accordingly, the change in the respective inter-

action has to be very similar. This means, that, on average, the number and the

distances of the additionally interacting water molecules have to be the same.

In order to get additional support for this reasoning we performed pressure

tuning hole burning experiments [55]. With these experiments it is possible to

estimate the size of an average interaction volume of the chromophore with its en-

vironment. We found that the respective radius is about 4–5 Å. Accordingly, appli-

cation of high pressure forces water molecules from the hydration shell into the

interior of the protein where they fill the voids around the chromophore in the

heme pocket. High-pressure (0.9 GPa) MD simulations (M Reif and Ch Scharnagl,

in preparation) are in full agreement with this view of pressure denaturation.

Summarizing this section we state that fluorescence experiments in combination

with other optical experiments and computer simulations provide a detailed in-

sight into the processes involved in pressure-induced protein denaturation.

5.5.4

Structural Features of the Pressure-denatured State

From the discussion above it is evident that pressure denaturation leads to a struc-

tural state which is different from the respective one obtained by thermal dena-

turation. It seems that many structural features of the native protein remain

preserved under pressure denaturation. Experimental evidence comes from NMR

experiments [6], but also from IR experiments [20, 21, 37, 38].

Figure 5.17 shows another experiment [56], namely a neutron-scattering experi-

ment with myoglobin as a target from which the conservation of native structural

elements in the denatured state is directly seen. Myoglobin denatures at pH 7 in

the range between 0.3 and 0.4 GPa as judged from the optical absorption spectrum

of the heme group. The corresponding changes in the protein structure and at the

protein–water interface can be deduced from the neutron structure factor HðQÞ of
a concentrated solution of myoglobin in D2O (Figure 5.17). Q denotes the length of

the scattering vector. The large maximum around Q ¼ 2 Å�1 arises from OaO cor-
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relations of water near the protein interface. This maximum increases with density.

The smaller maximum near Q ¼ 0:7 Å�1 reflects inter-helix correlations. The con-

trast is provided by the negative scattering length density of the protein hydrogen

atoms versus the positive scattering length density of C, N, and O. The most re-

markable feature is the persistence of this maximum above the transition at 0.45

GPa, indicating residual secondary structure in the pressure-unfolded form.

5.6

Conclusions and Outlook

Folding and denaturing processes of proteins are extremely complicated due to the

complex nature of the protein molecules with their huge manifold of structural

states. Hence, it is surprising that some of the characteristic features of equilib-

rium thermodynamics associated with the folded and denatured state are already

revealed on the basis of simple models. Most important in this context is the re-

duction of the folding and denaturing processes to just two essential states, namely

the native state and the denatured state. To reconcile this crude assumption with

the large structural phase space, we introduced the concept of ‘‘state lumping.’’

Another important approximation concerns the vanishing higher (higher than

two) derivatives of the chemical potential, rendering pressure- and temperature-

independent state parameters (specific heat, compressibility, thermal expansion) to

the protein. The result of these simplifying assumptions is an elliptically shaped
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Fig. 5.17. Comparative neutron scattering

experiments at ambient pressure and at high

pressure. Plotted is the neutron structure

factor HðQÞ as a function of Q. Data are for

myoglobin. The important feature is the partial

persistence of the protein helical structure

(peak at Q ¼ 0:7 Å�1) in the pressure-

denatured state.

(V7 21/7 14:24) VCH/G J-1079 Buchner I H3/R 10/03 PMU: WSL(W) 19/07/04 pp. 99–126 ch05_p ScalaLF (0).3.04.05 (p. 123)

5.6 Conclusions and Outlook 123



stability phase diagram, provided that the sign of the change in the specific heat

capacity and in the compressibility is the same.

Our experiments on the stability of a modified cytochrome c in a glycerol/water

solvent showed an almost perfect ellipse from which the regimes with positive and

negative volume changes as well as positive and negative entropy changes could be

deduced. We tried to shed some light on the microscopic aspects responsible for

these regimes. A dominant force is the hydrophobic interaction which depends

not only on temperature but also on pressure [57]. The characteristic structural fea-

tures of the pressure-denatured state are different from the respective ones of the

thermally denatured state. In both cases, however, water molecules come very close

to the chromophore.

As to the open questions in context with the stability phase diagram, we refer to

the elliptic shape. So far only closed diagrams have been observed, and in most

cases an elliptic shape was an appropriate description. The question comes up

how general this observation is and what the microscopic implications are. Ad-

mittedly, up to now few experiments have measured the full diagram.

Another problem concerns negative pressure. From an experimental point of

view negative pressures as low as �200 bar seem to be feasible. Denaturation un-

der negative pressure, that is under conditions where the relevant interactions are

weakened, would add valuable information on pressure-induced denaturing forces.

Finally the role of the solvent has to be addressed in more detail. The solvent

may have a dramatic influence on the hydrophobic interaction, the size of the sol-

vent molecules may play an important role in all processes involving pressure, and,

last but not least, understanding the influence of the solvent may also shed light

on the behavior of membrane proteins.
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