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Abstract

The neutron scattering spectrum of bound H2O was determined
from the excess scattering of H2O-hydrated myoglobin relative to a
sample hydrated with D2O. The resulting vibrational difference spec-
trum shows the well known translational and librational bands of bulk
water. Significant discrepancies arise at low frequencies indicating
that the diffusive motion is strongly retarded by interactions with
the protein surface. By Fourier deconvolution of constant Q-spectra
we obtain the intermediate scattering function and the time resolved
mean square displacement of the water protons on a 15 ps time scale.
We observe a sublinear increase in the squared displacements with
time suggesting anomalous diffusion. Furthermore, the fourth mo-
ment 〈r4(t)〉 exceeds the value expected for a Gaussian distribution,
which indicates either strong heterogeneity or anisotropic motions.
The data are discussed in relation to simulations and theoretical re-
sults on strongly coupled liquids.
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1. Introduction

The properties of water molecules interacting with a protein surface differ
from those in the bulk phase. The perturbation must be substantial since
crystallization is suppressed at least for the first two layers. Hydration wa-
ter can thus be supercooled easily and freezes forming a glass below 180 K
[1, 2]. Bulk water is known to form transient, ordered patches of low den-
sity in which the molecules are hydrogen-bonded to four neighbours. Order
fluctuations of the patch size account for the well known anomalies in the
second derivatives of the free energy of water. Furthermore, hydrogen bonds
connecting water to charged and polar surfaces are thought to act as patch
breakers, while nonpolar interactions enhance the formation of short range
order [3]. The dominance of patch breaking may explain why hydration wa-
ter does not crystallize. These structural effects [4] have their counterpart
in changes in mobility: Dielectric relaxation spectroscopy and n.m.r. de-
termine rotational correlation times of 70 - 80 ps compared to 8 ps in the
bulk. A similar ratio was reported for translational diffusion [5, 6, 7, 8]. The
depression in mobility reflects the constraints imposed by hydrogen bonding
of water to protein residues which are in general quite rigid. The question of
how water displacements couple to protein structural motions and how this
contributes to biological activity is still open. Of primary relevance are those
fluctuations which involve changes in hydration, such as folding or substrate
binding. These processes depend on the residence times of water molecules
near the protein surface. The exchange takes place within 300 ps as was
shown for trypsin inhibitor in solution [9].
However protein-water correlations also involve much shorter times: Molec-
ular dynamic simulations [10, 11, 12] and neutron scattering experiments[13]
on partially hydrated myoglobin and other proteins reveal fast structural re-
laxation processes which depend on hydration water:
The mean square displacements of hydrogens in the solvated protein dis-
play a striking nonlinear increase with temperature above 180 K, while har-
monic, linear behaviour is found at low temperatures. Time resolved analy-
sis shows that diffusive modes appear in parallel on a 10 ps time scale and
above. The anharmonic protein motions can be suppressed by dehydration
[14, 15, 11, 16]. This suggests that the dynamical contribution of water to
protein flexibility arises within a few picoseconds. Above ≈70 ps, the ro-
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tational correlation time of bound water, this influence reduces to viscous
damping. In this study we focus on fast water displacements on a time scale
below 20 ps.
Inelastic neutron scattering proved to be a very useful tool to measure ensem-
ble averaged water trajectories. The incoherent scattering by the water pro-
tons reveals the tagged particle displacements. Extensive studies have been
performed on perdeuterated phycocyanin[17] and bacteriorhodopsin [18, 19].
Perdeuteration suppresses the background of protein protons, since the cross
section of 2H is small compared to 1H. In the case of native purple membrane
a difference method was employed using H2O/D2O exchange [19]. The neu-
tron scattering spectrum in these studies was modelled by jump diffusion in
analogy to previous investigations on bulk water [20, 21]. However, the result-
ing parameter values are somewhat puzzling: In the case of phycocyanin the
mobile water fraction is assumed to perform confined translational diffusion
within a sphere of diameter 6 Å. The authors obtain a diffusion coefficient
in the sphere close to bulk water results. But the residence time between
successive jumps is about four times larger (4 ps at 293 K) and implies a
factor of two larger jump length in spite of confinement [17, 22]. In the case
of hydrated purple membrane a jump time of even 70 ps has been derived
[18]. Furthermore, the associated proton jump length of 4.1 Å is also signifi-
cantly larger than in the bulk. In contrast, the deduced rotational correlation
time of 10 ps approaches the bulk water value in disagreement with results
mentioned above.
Where do these differences come from? It is not clear how much the parame-
ter values depend on the assumptions used to model the data. For instance,
it is not clear whether the decoupling approximation which allows to separate
translation from rotation, applies to bound water. To avoid these problems
we prefer the alternative approach which consists in a model independent
analysis. The feasibility will be demonstrated below. For the first time we
determine the intermediate scattering function and the time resolved mean
square displacements of hydration water based on a general method. These
results will be compared with bulk water data [23, 24], computer simulations
[25] and mode coupling theory of simple liquids [26].
We investigate horse-myoglobin hydrated with H2O and D2O to h = 0.35 g/g.
The corresponding number of water molecules ≈ 350 is sufficient to cover the
entire protein surface. To simplify the situation we are not including a bulk
water phase, which avoids exchange between phases and ice formation. We
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have shown that this hydration is sufficient to initiate anharmonic protein
flexibility above 180 K [13, 27]. As a functional control, we studied ligand
bindig to partially hydrated myoglobin using flash photolysis [28]. The most
significant effect of dehydration consists in reducing the ligand exchange rate
between heme pocket and the surface. However, at 0.35 g/g the rate is still
within 30% of the value observed in solution. Since 1975 myoglobin has been
one of the most important model systems to study the connection of protein-
dynamics and function [29]. For this molecule the puzzling result was ob-
tained that water reorientation and fluctuations of the heme group display a
common temperature dependence in spite of a factor 100 difference in time
scales [30].

2. Materials and Methods

Hydrated samples of horse myoglobin (Mb, Sigma) were obtained by re-
hydrating lyophilized material with H2O or D2O in a controlled humidity
environment. The degree of hydration was determined by weighing. A typi-
cal amount of 300-500 mg of sample was held in a thin walled vacuum tight
aluminium cell of diameter 50 mm and 1.5 mm intervall spacing. The samples
were measured using the time-of-flight spectrometer IN6 (ILL, Grenoble) at
a wavelength of 5.1 Å and oriented at 135◦ to the incident beam. The trans-
mission was close to 0.9. To obtain data of sufficient quality required 6 to 8
hours of beam time per sample and temperature. The initial data reduction
was performed using standard ILL programs which correct for incident flux,
cell scattering and self shielding using an angle dependent slab correction.
To compensate for detector efficiency the data were normalized with a vana-
dium spectrum.
The scattering function was measured versus scattering angle θ and energy
exchange h̄ω: S(θ, ω). To derive the dynamical structure factor, S(Q,ω), (h̄Q
denotes the momentum exchange) the data are transformed into a constant
Q format using an interpolation procedure [31]. This step is essential since
the scattering vector Q varies with ω at fixed scattering angle because of the
neutron kinematics.

The dynamics of hydration water was determined from the excess scattering
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of H2O-hydrated myoglobin relative to the D2O-hydrated protein. As the
spectra are dominated by the incoherent scattering from the protons, the
following numbers were used for proper normalisation of the data:

type of proton H2O hydrated D2O hydrated

carbon bound, not exchangeable ≈ 1000 ≈ 1000
surface bound, exchangeable ≈ 130 -
amide protons, exchange dependent
on exposure time to D2O ≈ 150 75±25
water 700. . .750 -
sum ≈ 2000 ≈1050. . .1100

The fraction fP of protein protons to be subtracted thus amounts to 50-55 %,
given that the individual spectra are properly normalised. For normalisation
of the data we use the frequency integral

∫
S(Q,ω)dω at fixed wavevector

Q. The resulting normalisation function NP (Q,T) was independent of tem-
perature within 2 %, but shows variations with Q due to the residual 10 %
coherent contribution to the mainly incoherent signal. The structure factor
of hydration water is then calculated from:

Shydr.w.(Q, h̄ω) =
SP+H2O(Q, h̄ω) − fP · SP+D2O(Q, h̄ω)

1 − fP

. (1)

The resulting spectra contain an approximate 20 % contribution from ex-
changeable protein protons. To estimate the relevance of this effect we con-
sider two limiting cases. Case I: The exchangeable hydrogens are dynami-
cally equivalent to water protons. Case II: The labile hydrogens move like
the nonexchangeable protons. Experiments performed with protonated and
D-exchanged protein at low hydration allow to exclude a kinetic isotope effect
on protein motions. The D-exchange did not modify the spectral lineshape.
To a first approximation, exchange only affects the scale factor fP of the pro-
tein background [32]. Unless specified otherwise we assume case I.

The Q-dependence at constant energy transfer was parametrized as a poly-
nomial in Q2, appropriate for incoherent scattering from isotropic samples:
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S(Q, ω) = A(ω) + B(ω) · Q2 + C(ω) · Q4 (2)

For incoherent scattering from a perfectly harmonic system this is just the
Placzek expansion with the offset A(ω) taking into account multiple scat-
tering. We could reproduce the experimental offset quantitatively by cal-
culating the double scattering intensities of the kind elastic-inelastic and
inelastic-elastic. The calculations also show that this background is essen-
tially Q-independent as assumed in the polynomial ansatz. The data were
corrected for multiple scattering but the details will be discussed in ref. [31].

3. Vibrational Spectra: Dynamical Susceptibility

Fig. 1 compares selected spectra of hydration water with bulk water data:
The figure shows the dynamical susceptibility, S(Q,ω)/n(ω,T). The normali-
sation of S(Q,ω) by the Bose occupation factor, n(ω,T), removes the tempera-
ture dependence in the one phonon approximation provided that the system
is harmonic. The low frequency susceptibility of bulk water exhibits four
distinct maxima [33, 34, 24]: the librational peak near 70 meV, two trans-
lational peaks, TA1(7 meV) and TA2 (22 meV) and the α-resonance, below
3 meV, which corresponds to diffusive structural relaxation. Fig. 1 com-
bines neutron scattering [23] with depolarized light scattering experiments
[24]. TA2 involves only small proton displacements and is thus difficult to
observe by neutron scattering. However, by superimposing neutron and light
scattering data below 10 meV we found agreement almost within the error
bars (not shown). This suggests that depolarized light scattering, in spite
of Q≈ 10−3Å−1 couples to the same microscopic motions that are seen at
Q ≈ 2 Å−1 by neutron scattering [35]. At 270 K, as shown in fig. 1, the
α-resonance has moved to lower frequencies and is now better resolved from
the translational peak than at 300 K. The hydration water exhibits the same
vibrational bands as bulk water with minor changes in frequency and in-
tensity. However the α-resonance is missing. Instead one observes a deep
minimum in the susceptibility. Note the steep increase below 0.2 meV which
results from elastic scattering due to slow motions that are not resolved by
the spectrometer. This observation clearly demonstrates that protein-water
interactions slow down the structural relaxation of water substantially. The
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low frequency spectrum of bulk water as shown in fig. 1 is complete and
accounts entirely for macroscopic properties such as viscosity. The bound
water spectrum in contrast is incomplete and exhibits only vibrational and
local diffusive motions. The existence of local diffusive motions can be in-
ferred from the strong temperature dependence of the susceptibility minimum
(fig. 1). Therefore the effect of water on fast density fluctuations in the pro-
tein structure cannot simply be characterised by a microviscosity constant.
Heterogeneity in time and space will play an important role. To get more
insight into fast diffusive displacements of bound water we first transform
the spectra to the time domain which yields the self-intermediate scattering
function I(Q,t).

4. Diffusive Motions: Intermediate Scattering Function

Hydration water can be supercooled easily and turns into a glass below
180 K [1, 2]. In parallel the minimum in the susceptibility decreases and
shifts to lower frequencies as shown in fig 1. The temperature dependence of
the spectrum will be discussed elsewhere [31]. In the following we focus on
high temperatures in search of translational diffusion.
To this end, the data at constant Q were Fourier deconvoluted from the in-
strumental resolution function in the time domain and corrected for multiple
scattering. The resulting set of incoherent intermediate scattering functions
I(Q,t) at 320 K is shown in fig. 2:
The two-step decay in the density correlations corresponds to dephasing of
librational-translational modes and slow diffusive displacements respectively.
In the hydrodynamic limit the translational self-diffusion implies a Gaussian
incoherent scattering function:

I(Q, t) = f(Q) · exp (−t/τ), Q → 0 (3)

with 1/ τ = D· Q2 and f(Q) = 1 for Q→0. D denotes the translational dif-
fusion coefficient and
1 - f(Q) represents the fraction of fast motions. Neutron scattering registers
displacements on a microscopic scale or large Q. In the large Q-regime the
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prediction of I(Q,t) is difficult because of the complexity of local interac-
tions at short times. In the case of bound water, one can imagine a com-
bined rotational- translational motion coupled to fast protein conformational
changes. These interactions generally create some heterogeneity leading to
nonexponential correlation functions. The observed time decay is indeed
stretched and could be approximated by a Kohlrausch function:

IK(Q, t) = f(Q) · exp (−(t/τK)β) (4)

where β(Q)¡ 1 and τK(Q) depend on Q. The solid lines in fig. 2 represent
two parameter fits (β, τK) of this function to the incoherent scattering data
of bound water. The approximation appears reasonable at high Q and long
times. At low Q unambiguous fits are not possible because of the small change
in I(Q,t) in the accessible time window. The stretching parameter β varies
between 0.3-0.4 as shown in fig. 3. The lineshape at large Q-values differs
thus significantly from the Lorentzian case (β = 1) at small wavevectors.
However, the average correlation time 〈τK(Q)〉,

〈τK〉 =
∫

dt IK(Q, t)/f(Q) = τK · Γ(1/β)/β (5)

shows approximately the same 1/Q2 -dependence (fig. 3 and equ. 3) expected
for small wavevectors. Assuming 1/〈τK〉 = D·Q2 we obtain an estimate of the
long time diffusion coefficient D: For case I, we obtain 2·10−7cm2/s, which is
about a factor of 100 below the value of bulk water. In the opposite limit
of case II, also shown in fig. 3, we find 0.01 Å2/ps, still 20 times smaller
than in the bulk. These results belong to the lower edge of published long
time diffusion coefficients [6, 8], but at h = 0.35 g/g, we are investigating the
primary shell of hydration.
The Q-dependence of 〈τK〉 is regular but the fits of the data to equ.4 are
incompatible with a Gaussian scattering law such as equ. 3: (1/τβ) is not
proportional to Q2. Non-Gaussian scattering could emerge for the following
reasons: First, the distribution of dynamically accessible sites may be non-
Gaussian. Second, the motion may be anisotropic. So even a Gaussian
distribution along a particular coordinate will produce a non-Gaussian result
after averaging over all orientations in an isotropic sample. A third possiblity
could be an inhomogeneity in the displacement amplitudes.
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The conclusions obtained so far are based on a phenomenological model, the
Kohlrausch function. The model describes the long time behaviour rather
well, but a precise test would require information at even longer times since
〈τK〉 varies between 20 ps and 100 ps, which is outside of the experimental
window. It is interesting in this context that quite similar results were derived
recently in a neutron scattering study of glycerol, another glass-former where
hydrogen bonds play a crucial role [36].
To get more insight into the short time and low Q behaviour, we now analyze
the moments of the displacement distribution which does not involve any
particular model.

5. Mean Square Displacements: Anomalous Diffusion

To evaluate the moments of I(Q,t), cuts at constant time are approximated by
a polynomial up to second order in Q2 which represents the Fourier transform
of equ. 2:

I(Q, t) = A(t) + B(t) · Q2 + C(t) · Q4 (6)

where A(t)≡ 1 in the ideal case of single scattering. For isotropic samples
B(t) denotes the mean square displacement, B(t) = -1

6
〈r2(t)〉. In the case

of isotropic Gaussian scattering one has: C(t) = 1
2

B2(t). C(t) is generally
related to the fourth moment by: C(t) = 1

120
〈 r4(t)〉. Fig. 4 shows ln I(Q2)

at several instances of time together with the polynomial fits. The initial
slope yields the second moment, the mean square displacement which in-
creases with time. But in addition a nonzero curvature appears above 1 ps
consistent with a non-Gaussian scattering profile. The corresponding devia-
tion from a Gaussian displacement distribution can be quantified by the ratio
C(t)/B2(t). After correcting for multiple scattering the calculations converge
to a ratio near 0.80 (±0.1) in excess of the Gaussian value of 0.5 as shown in
fig. 5.

Fig. 6 finally shows the mean square displacements of bound water protons in
comparison with a neutron scattering analysis of bulk water by Brockhouse
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et al. [23] and molecular dynamic simulations [25]. Bulk water, both in the
experiment and the simulation reaches the classical diffusion limit 〈r2(t)〉 ∝ t
after ≈ 1 ps and ≈ 5 ps at 350 K and 300 K respectively. Hydration water in
contrast shows no sign of a cross-over to normal diffusion on a 15 ps time scale
even at the highest temperature of 320 K. Instead the displacements follow
a power law: 〈r2〉 ∝ t0.4 at both temperatures. This result suggests that
the displacement events are not homogeneously spread in time but occur in
bursts. Such clusters may correlate with the simultaneous breaking of several
hydrogen bonds. Thus, consistent with the Kohlrausch fit discussed above,
we obtain a fractal time dependence in combination with a non-Gaussian
displacement distribution.

6. Discussion

The understanding of the liquid state requires the knowledge of accurate
time correlation functions [37]. This applies also to water in contact with a
protein surface. Our main concern was to determine intermediate scatter-
ing functions of bound water without resorting to specific models. We find
that the essential difference to bulk water consists in an extendend window
of anomalous diffusion which opens between the vibrational and the hydro-
dynamic time scale. The anomaly reflects the coupling of water to protein
residues. The interaction must include dynamic correlations, since a static
distribution of diffusion coefficients, a reduction in dimensionality or stronger
hydrogen bonding would not affect the linear time dependence of the squared
displacements. Strong inter-particle correlations occur in supercooled liquids
near a glass transition. Recent developments in mode coupling theory which
account for this effect could reproduce the characteristic anomalies that are
observed near the glass transition [38]. According to mode coupling theory
the macroscopic viscosity reflects the dynamical constraints that a particle
experiences in the microscopic cage formed by its nearest neighbours [38].
Approaching a critical density, the cage becomes a trap and the liquid ap-
pears structurally arrested on a macroscopic scale. The theory predicts cer-
tain universal results, which hold independently of the microscopic details.
The theory was shown to applies to hard core liquids, where all dynamic
properties can be derived using only the static structure factor as input [26].
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But similar constraints seem to be relevant for softer potentials. The theory
has been used to interpret experiments on various materials including the
light scattering data of bulk water shown in fig.1 [24]. The protein surface,
besides suppressing crystallization, seems to drive the water molecules to-
wards a glassy state. To estimate the relevance of interparticle correlations
we discuss our results in this general context. The data in fig. 1 display
the high frequency wing of the α-relaxation. In this so-called von Schweidler
regime, that is for times shorter than the structural relaxation time τ , the
theory yields the following self-intermediate scattering function [39, 38]:

I(Q, t) = f(Q) − h1(Q) · (t/τ)b + h2(Q) · (t/τ)2b − ..., t � τ (7)

Here the wavevector dependent coefficients f(Q, h1(Q), h2(Q) are solely de-
termined by the equilibrium structure. The structural relaxation time, τ ,
reflects displacements on the scale of the interparticle distance and there-
fore, in contrast to τK , does not depend on Q. Both quantities should be
identical for Q-values near the first maximum of the static structure fac-
tor. f(Q) denotes the strength of the α- relaxation as before and the hi(Q)
are called critical amplitudes. The von-Schweidler exponent, b, represents
a characteristic quantity of the material and does not change with temper-
ature. Expanding the Q-dependent factors for low Q and short times one
obtains [39, 26]:

I(Q, t) ≈ 1 − Q2r2
s − Q2δ2(t/τ)b + ... (8)

rs denotes the fast local displacements, while δ is associated with the escape
out of the cage. For hard spheres these parameters are linked to the diameter
a: rs ≈ a

9
and δ ≈ a

6
[26]. The mean square displacement describing the inital

phase of escape out of the cage is then given by:

1

6
〈r2(t)〉 ≈ r2

s + δ2 · (t/τ)b + O((t/τ)2b) (9)

The numerical values can be evaluated if the various partial structure factors
of the liquid are known. A detailed discussion has been given for the hard
sphere system [26, 40]. Equation (9) seems to be closely related to what
we observe in fig. 6. Fitting the data at 320 K, we derive an effective
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hard core diameter of bound water, a = 2.7(±0.1)Å, remarkably close the
O–O distance of bulk water. For the exponent we get, b = 0.55(±0.05),
the theoretical result for the hard-sphere liquid is 0.532 [26]. The relaxation
time τ amounts to 5(±1) ps, five times larger than for bulk water [21]. The
relaxation time should be compared with τK(Q = Qmax) in fig. 3 which is
about 10 ps for Qmax = 2 Å−1 in case I or 5 ps in case II. Since 〈r2(t)〉 at
short times does not depend significantly on how we treat the exchangeable
protons, a consistency argument concerning τ would faviour case II over case
I. The numbers are thus quite reasonable. However the small value of τ
requires to complement the series in equs. (8,9) by further terms which leads
to the intermediate Q and time regime. The experimental I(Q,t) in this
range was approximated by a Kohlrausch function (equ. 3 and fig. 2). This
result is again consistent with theoretical expectations: By solving the mode
coupling equations numerically it was shown, that the Kohlrausch law can
serve as an appropriate but not exact fitting function [38, 26]. It fails at short
times and small Q which specifies the von-Schweidler regime. It is reassuring
that the Kohlrausch fits to the calculated I(Q,t) yield an average correlation
time (equ. 5) which varies with 1/Q2 even at large Q as in fig. 3. Although
the interaction potential of water is badly approximated by a hard core the
results discussed above suggest that the dynamic correlations induced by
the cage effect and not the detailed nature of the constraints control the
diffusive dynamics of bound water at short times. We finally mention that
similar anomalies were oberved for the fluctuations of the protein structure
on the same time scale [13, 41].
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Figure Captions:

Fig. 1: Dynamical susceptibility of bulk water (small symbols) and of
hydration water (large symbols): broken line represents corrected
neutron scattering data * [23], and the solid line
denotes the light scattering results ** [24],
circles: hydration water at 300 K and triangles: 180 K.

Fig. 2: Intermediate Scattering function of hydration water at 320 K
assuming the exchangeable protons to be dynamically equivalent to
water protons, case I. The lines represent fits to equ.4
assuming I(Q,0) = 1.

Fig. 3: The parameters of fitting the data to equ. 4, shown in fig.2:
open symbols: case I and closed symbols: case II.
The stretching parameter β, diamonds,
the correlation time τK , circles and the average
correlation time 〈τK〉, triangles

Fig. 4: Intermediate scattering function ln I(Q,t) at fixed time points
versus Q2, showing that slope and curvature increase with time.

Fig. 5: The curvature of the data in fig. 4 corresponding to the fourth
moment, normalized by the square of the second moment:
the time evolution of C(t)/B2(t) in comparison with
the Gaussian expectation.

Fig. 6: The time resolved x-mean square displacements of bulk water:
neutron scattering, solid triangles **[23] and
simulation, solid line * [25].
Hydration water at 300 and 320 K, solid circles and open triangles.
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